Efficient Preparative-scale Enzymatic Synthesis of Specifically Deuteriated Bile Acids

Sergio Riva, Gianluca Ottolina, and Giacomo Carrea*

Istituto di chimica degli Ormoni, C.N.R. Via Mario Bianco 9, 20131 Milano, Italy Bruno Danieli Dipartimento di Chimica Organica e Industriale, Centro C.N.R. di Studio delle Sostanze Organiche Naturali, Via Venezian 21, 20133 Milano, Italy

The regio- and stereo-specific syntheses of $[3\alpha^{-2}H]$ - 3β -hydroxy-7,12-dioxo- 5β -cholan-24-oic acid, $[7\beta^{-2}H]$ - 7α -hydroxy-3,12-dioxo- 5β -cholan-24-oic acid, and $[12\beta^{-2}H]$ - 12α -hydroxy-3,7-dioxo- 5β -cholan-24-oic acid have been carried out on preparative scale by coupling the reduction of 3,7,12-trioxo- 5β -cholan-24-oic acid, catalyzed by 3β ,17 β -, 7α -or 12α -hydroxysteroid dehydrogenase, to the oxidation of $[1^{-2}H]$ glucose, catalyzed by glucose dehydrogenase. The transfer of deuterium from glucose to bile acid was mediated by catalytic amounts of coenzyme continuously recycled *in situ*. The isotopic purity of deuteriated bile acids, determined by ¹H n.m.r. spectrometry, was $\geq 94\%$.

Deuteriated compounds can be synthesized enzymatically on a small scale (0.1 mmol) with procedures involving the stoicheiometric consumption of labelled NAD(P)H (see review article in ref. 1). These procedures, of course, are not economically convenient, especially for large-scale preparations. To overcome this limitation, Wong and Whitesides² developed a coupledenzymes system in which the coenzyme is regenerated in situ by formate dehydrogenase and deuteriated formic acid as the ²H source. With this method gram-quantities of labelled compounds can be prepared. The system, however, is only usable with NAD-dependent enzymes, since formate dehydrogenase does not accept NADP. Here we report the preparative-scale enzymatic synthesis of deuteriated bile acids by a coupledenzymes system suitable for both NAD- and NADP-dependent enzymes. The system consisted of specific hydroxysteroid dehydrogenases, that, as previously reported,3-5 catalyze the regio- and stereo-specific oxidoreduction of the hydroxy-keto groups of a variety of steroids, and glucose dehydrogenase, that regenerates the coenzymes.

Results and Discussion

The synthesis of $[3\alpha^{-2}H]$ -3 β -hydroxy-7,12-dioxo-5 β -cholan-24oic acid (2), $[7\beta^{-2}H]$ -7 α -hydroxy-3,12-dioxo-5 β -cholan-24-oic acid (3), and $[12\beta^{-2}H]$ -12 α -hydroxy-3,7-dioxo-5 β -cholan-24oic acid (4) were carried out by coupling the reduction of 3,7,12trioxo-5 β -cholan-24-oic acid (1) catalyzed by specific hydroxysteroid dehydrogenases to the oxidation of $[1^{-2}H]$ glucose catalyzed by glucose dehydrogenase (Scheme). The transfer of deuterium from glucose to bile acid was mediated by catalytic amounts of coenzyme continuously recycled *in situ*.

The coenzyme regenerating system was suitable for both NAD-dependent $(3\beta,17\beta$ -and 7α -hydroxysteroid dehydrogenase) and NADP-dependent $(12\alpha$ -hydroxysteroid dehydrogenase) enzymes, because glucose dehydrogenase works with both NAD and NADP. The turnover number (mol of product generated per mol of coenzyme) was *ca.* 125 and the bile acid conversion was quantitative because of the high overall equilibrium constant of the coupled reactions.³ It should be noted that $3\beta,17\beta$ -,⁶ 7α -⁷ 12α -hydroxysteroid dehydrogenase⁷ and glucose dehydrogenase⁶ are all B-stereospecific, so that high turnover numbers are not strictly necessary to obtain high isotopic purity, as they would be with enzymes of opposite stereospecificity.

 δ - Gluconolactone + NAD(P)D + H⁺

Scheme Synthesis of regio- and stereo-specifically deuteriated bile acids with $3\beta_1 17\beta_-$, $7\alpha_-$ and 12α -hydroxysteroid dehydrogenase (β_- , $7\alpha_-$ and 12α -HSDH).

As already found for the non-deuteriated bile acid analogues,³ the reactions were completely regio- and stereo-specific furnishing (2), (3), and (4) with a purity $\geq 98\%$. The isotopic purity ($\geq 94\%$) was determined by ¹H n.m.r. spectrometry, through comparison of integrated areas of residuals 3α -H, 7β -H, and 12β -H, respectively, with the area of the C-21 methyl group.

Besides commercial $[1-{}^{2}H]$ glucose, which is rather expensive, we have also used deuteriated glucose, easily prepared by sodium borodeuteride-mediated reduction of δ -gluconolactone.⁸ This compound, employed without any purification, gave deuteriated bile acids with the same purity as the ones obtained with commercial glucose.

In conclusion, the use of the $[1-{}^{2}H]$ glucose/glucose dehydrogenase system with catalytic amounts of non-labelled coenzymes made it possible to prepare 0.5—1 mmol quantities of deuteriated bile acids in high yield and isotopic purity, suitable for metabolic studies. The $[1-{}^{2}H]$ glucose/glucose dehydrogenase system is, in principle, applicable to any preparative-scale deuteriation involving NAD(P)-dependent enzymes.

Experimental

Glucose dehydrogenase (EC 1.1.1.47, 200 U mg⁻¹ protein), 7α hydroxysteroid dehydrogenase from *E. coli* (EC 1.1.1.159, 7 U mg⁻¹ of protein), 3β ,17 β -hydroxysteroid dehydrogenase (EC 1.1.1.51, 26 U mg⁻¹ of protein), and [1-²H]glucose (98% ²H) were obtained from Sigma. 12 α -Hydroxysteroid dehydrogenase (EC 1.1.1.176, 2.4 U mg⁻¹ of protein) was extracted from *Clostridium* group P as described by Macdonald *et al.*⁹ All other reagents and compounds were of analytical grade. ¹H N.m.r. spectra were obtained on a Brucker 270 (270 MHz) instrument in deuteriated dimethyl sulphoxide with Me₄Si as internal standard. H.p.l.c. and t.l.c. analyses were carried out as already described.³

Synthesis of Deuteriated Bile Acids.—(a) $[3\alpha^{-2}H]$ -3 β -Hydroxy-7,12-dioxo-5 β -cholan-24-oic acid (2). A solution (100 ml) containing 0.05M potassium phosphate, 10% ethanol, 1mM DTT, 25 mM deuteriated glucose, 7.5 mM (320 mg) of the sodium salt of (1), 0.06mM NAD, 50 U of glucose dehydrogenase, and 100 U of 3 β ,17 β -hydroxysteroid dehydrogenase was titrated to pH 6.7 and left to react at room temperature. The course of the reaction was monitored by t.l.c. and h.p.l.c. After ca. 8 h the reduction of (1) was complete. The solution was acidified to pH 4.5 with HCl and extracted with ethyl acetate (3 × 50 ml). The combined organic phases were dried (Na_2SO_4) , evaporated under reduced pressure, and dessicated (86% yield). Chromatographic (h.p.l.c. and t.l.c.) and physical (m.p., $[\alpha]_D$) data were identical with those of the non-deuteriated analogue:³ δ [270 MHz; (CD₃)₂SO]; 3.79 [1H, t, residual 3 α -H (6%)], 1.26 (3 H, s, 19-CH₃), 0.98 (3 H, s, 18-CH₃), and 0.74 (3 H, d, 21-CH₃).

(b) $[7\beta^{-2}H]-7\alpha$ -Hydroxy-3,12-dioxo-5 β -cholan-24-oic acid (3). The compound was prepared in the same way as (2) with 7α hydroxysteroid dehydrogenase (100 U) instead of 3β ,17 β hydroxysteroid dehydrogenase. The reaction was complete after 9 h and the yield was 84%. Chromatographic and physical data were identical to those of the non-deuteriated analogue:³ δ [270 MHz; (CD₃)₂SO] 3.78 [1 H, q, residual 7 β -H (5%)], 1.05 (3 H, s, 19-CH₃), 1.00 (3 H, s, 18-CH₃), 0.77 (3 H, d, 21-CH₃).

(c) $[12\beta^{-2}H]$ - 12α -Hydroxy-3,7-dioxo-5 β -cholan-24-oic acid (4). The compound was prepared in a similar way to compound (2) with 12α -hydroxysteroid dehydrogenase (60 U) instead of 3 β ,17 β -hydroxysteroid dehydrogenase and NADP (0.04 mM) instead of NAD. The reaction was complete after 6 h, with an 88% yield. Chromatographic and physical data were identical with those of the non-deuteriated analogue.³ δ [270 MHz, (CD₃)₂SO] 3.83 (1 H, t, residual 12 β -H (<3%)], 1.22 (3 H, s, 19-CH₃), 0.93 (3 H, d, 21-CH₃), and 0.63 (3 H, s, 18-CH₃).

Acknowledgements

We thank the Biotechnology Action Programme of the Commission of the European Communities for financial support of this work.

References

- 1 J. B. Jones, Tetrahedron, 1986, 42, 3351.
- 2 C. H. Wong and G. M. Whitesides, J. Am. Chem. Soc., 1983, 105, 5012.
- 3 S. Riva, R. Bovara, P. Pasta, and G. Carrea, J. Org. Chem., 1986, 51, 2902
- 4 G. Carrea and P. Cremonesi, Methods Enzymol., 1987, 136, 150.
- 5 S. Riva, R. Bovara, L. Zetta, P. Pasta, G. Ottolina, and G. Carrea, J. Org. Chem., 1988, 53, 88.
- 6 K.-S. You, Methods Enzymol., 1982, 87, 101.
- 7 G. Ottolina, S. Riva, G. Carrea, B. Danieli, and A. F. Buckmann, 1989, *Biochim. Biophys. Acta*, in the press.
- 8 M. L. Wolfrom and H. B. Wood, J. Org. Chem., 1951, 73, 2933.
- 9 I. A. Macdonald, J. F. Jellet, and D. E. Mahony, J. Lipid Res., 1979, 20, 234.

Received 20th April 1989; Paper 9/01682A